- AP-42 emission factors for criteria pollutants and HAP in Section 1.4; and
- 40 CFR 98 Subparts A and C for GHG emissions

For the malfunction scenario in where natural gas interruption occurs, emissions from No.2 fuel combustion at maximum design capacity for a period of 160 hours per year was used to calculate the potential for air emissions. Emission factors from Section 1.3 of AP-42 for criteria pollutants and HAP were used in this scenario and 40 CFR 98 Subparts A and C for GHG. These emissions were assumed to be uncontrolled. Production will cease during this malfunction scenario.

The PTE for the furnace in Appendix C was calculated by adding 160 hours of emissions from the malfunction scenario above to 8,760 hours of normal operation emissions for a total of 8,920 operating hours per year. Even this is impossible occurrence, it is a simple accounting of emission and conservative.

3.2.3 Forehearths

Emissions from the forehearths were based on the heat input capacity of the four forehearth heating systems of 27.3 MMBtu/hr. Criteria pollutants, HAP and GHG emissions were calculated using the following:

- AP-42 emission factors for criteria pollutants and HAP in Section 1.4; and
- 40 CFR 98 Subparts A and C for GHG emissions

For the malfunction scenario in where natural gas interruption occurs, emissions from LPG combustion at maximum design capacity for a period of 160 hours per year was used to calculate the potential for air emissions. Emission factors from Section 1.3 of AP-42 for criteria pollutants and HAP were used in this scenario and 40 CFR 98 Subparts A and C for GHG. These emissions were assumed to be uncontrolled. Production will cease during this malfunction scenario.

The PTE for the furnace in Appendix C was calculated by adding 160 hours of emissions from the malfunction scenario above to 8,760 hours of normal operation emissions for a total of 8,920 operating hours per year. Even this is impossible occurrence, it is a simple accounting of emission and conservative.

3.2.4 Hot End Coaters

VOC emissions from the Hot End Coating hoods were based on the maximum coating rates of 1.5 pounds from each coater. A total of 6 pounds per hour of coating material can be applied at the four Hot End Coaters. The air emissions are based on a mass balance calculation. VOC content is assumed to be 100% volatilized. This means the VOC material content of 0.671 percent is assumed to be 100 percent volatilized.

3.2.5 Mold Preheaters

Emissions from the four Mold Preheaters were calculated using the design total heat input capacity of 2.047 MMBtu per hour firing natural gas and AP-42 emission factors from Section 1.4.

3.2.6 Lehrs

Emissions from the annealing lehrs were calculated using the maximum heat input capacity of 9.554 MMBtu per hour firing natural gas and AP-42 emission factors from Section 1.4. The average operating rate is expected to be 5,732 MMBtu per hour.

3.2.7 Cold End Coaters

VOC emissions from the Cold End Coating dispensers were based on the maximum coating rates of 2 gallons from each coater. The air emissions are based on a mass balance calculation. VOC content is assumed to be 100 percent volatilized.