A Critical Evaluation of M-CORES: Impact Analysis and Exploring Alternatives

September 14, 2020

Table of Contents

Fiscal Feasibility

•	Key Fiscal Findings	Slide 9
•	Methods of Funding	Slide 14
•	Feasibility Evaluation Framework	Slide 15
Er Er	vironmental Impact	
•	M-CORES Pollution Promotion	Slide 17
•	Health Risks	Slide 18
•	Water Treatment Associated Costs	Slide 19
•	Current Economic Issues	Slide 20
•	Carbon Emissions from Development	Slide 21
Ec	onomic Impact	
•	Economic Research	Slide 23
•	Alternative Investment	Slide 25

Table of Contents

Broadband Investment

 Broadband Deployment Overview 	Slide 27
 Aerial vs Underground Fiber Optic Cable Installation 	Slide 29
 Average Cost of Broadband Implementation 	Slide 30
 Benefit/Cost of Broadband Implementation 	Slide 31
Traffic Congestion Alleviation	
 Daily Traffic Congestion Solutions 	Slide 36-37
Hurricane Evacuation Strategy	
 Effective Fuel Distribution 	Slide 39
 Efficient Usage of Roads 	Slide 40
 Public Awareness Campaign for Emergency Preparedness 	Slide 41
 Propose Alternatives to M-CORES 	Slide 42
Cost Benefit Analysis	Slide 44

Overview A walkthrough of M-CORES and our key areas of study

Triple-Bottom Line Impact Assessment of M-CORES's fiscal, environmental, and socioeconomic impact

Hurricane Evacuation and Traffic Congestion In-depth analysis of effect on evacuation and best practice traffic measures

Conclusion A recap of the key findings of the study

Overview A walkthrough of M-CORES and our key areas of study

Triple-Bottom Line Impact Assessment of M-CORES's fiscal, environmental, and socioeconomic impact

Hurricane Evacuation and Traffic Congestion In-depth analysis of effect on evacuation and best practice traffic measures

Conclusion A recap of the key findings of the study

Project Scope

Cornell Consulting conducted the research assigned to M-CORES task forces to fill research gaps that fully considered alternatives to road construction in coordination with the **No Roads to Ruin Coalition**

1 Examined M-CORES goals	 M-CORES will not positively impact the communities in the study areas M-CORES is not feasible to implement
2 Triple-Bottom Line Analysis	 We provided a quantitative analysis of M-CORES' project impacts M-CORES is fiscally infeasible, and the proposed highway exacerbates existing environmental and economic problems
3 Recommending Alternatives	 There are cheaper and safer ways to meet M-CORES' economic development goals There are more efficient strategies to achieve hurricane evacuation and traffic decongestion goals

Across all study areas, quantitative results indicates M-CORES will fail to meet its goals

Overview A walkthrough of M-CORES and our key areas of study

Triple-Bottom Line Impact Assessment of M-CORES's fiscal, environmental, and socioeconomic impact

Hurricane Evacuation and Traffic Congestion In-depth analysis of effect on evacuation and best practice traffic measures

Conclusion A recap of the key findings of the study

Fiscal Feasibility

Assessing the Financial Feasibility of M-CORES Toll Roads

Cornell Consulting used industry standard methodologies to develop a model projecting the M-CORES initiative fiscal returns

Context —

The M-CORES program proposes three toll roads to benefit Florida. The claims of economic feasibility lack empirical research or studies.

Solution Framework —

Analyzed publicly available FDOT datasets with statistical methods for toll usage rate and case studies for economic growth projections

Determined construction cost, timeline, toll operating price, and expenses by using a series of FDOT data and public data

Evaluated feasibility through underwriting analysis and FDOT economically feasible framework

M-CORES was found to be not economically feasible nor significantly increase local county GDP

Key Fiscal Findings

M-CORES toll roads were determined to be **not feasible** in over 500 simulated model trials

Findings	Suncoast	Northern Turnpike	Southwest- Central	M-CORES Total
Development Cost (in Billions)	5	2	3.3	10.3
Miles	150	40	140	330
Cost/Mile (in Millions)	36.7	45.4	25.5	30.3
Years to Build	10	6	10	10
Government Funding (in Millions)	818	330	550	1700
FDOT Funding* (in Billions)	4.2	1.7	2.8	8.7
Feasible	×	×	×	×

*Assumes no interest during the construction portion and includes FDOT revenue, FDOT bonds, and private partnership

Comparable Methodology

We used a comparable methodology to ground our assumptions for highway construction cost, toll price, operating expenses, and economic discount

- 1 **Finding Dataset** We found comparable highways by looking for similar types of projects through geography, topography, and mileage.
- Create a Scoring Metric The similarity scoring metric was out of the number of factors identified to change either cost/mile, expenses, or toll cost/mile
- Score the Highways

A point was scored if the highway was similar in each category. This was determined by researching key influencing metrics on data-set highways and the proposed highways

Topography

2

Build Year

Population Density

3

Mileage

Environment

The assumptions differed across each connector due to different identified factors

Usage rate growth and demand varied across M-CORES connector counties with usage growth dependent on GDP and population growth

 Methodology

 We found the best methodology to account for time sensitive usage rates and long-term projections to be the exponential smoothing model based on FDOT modeling recommendations

We accounted for forecast variations in the feasibility models

*6-8 Year Usage Increase not included in figure

Using FDOT data on road usage and mileage, Cornell Consulting projected starting usage rates for each of the three M-CORES Corridors at the times of their completion

13

Short-Term Post Construction Increase

Usage rate growth and demand varied across M-CORES connector counties but may increase due to (a) economic activity and (b) latent demand

Post Construction Road Usage Increase

Short-term increase in usage after completion
Individuals make decisions about whether to drive based on time - if there is traffic people will not drive, if there is no traffic people will drive
Using these inputs we assumed a short-term increase in usage of 0%-4.25% for 6-8 years before returning to steady state growth

Methods of Funding

M-CORES will need \$+10B in funding for road construction alone

M-CORES can be funded but the project will heavily strain the FDOT financial system

Feasibility Evaluation Framework

Cornell Consulting used FDOT's "economically feasible" framework for new projects to evaluate each connector in over 500 scenarios

FDOT Requirements

FDOT has stringent requirements on new projects that require after the project is complete:

- 50% debt service coverage ratio at year 12
- 100% debt service coverage ratio at year 30
- Construction cost payback period of 15 years

We ran a Monte-Carlo Simulation to find (a) what assumptions make the connectors feasible, (b) account for assumption errors, and (c) what % of the time are the requirements are met

Requirement	Suncoast	Northern Turnpike	Southwest-Central
Year 12 DSCR 50%	0%	71%	99%
Year 30 DSCR 100%	0%	37%	95%
Year 15 Construction Payback*	0%	0%	0%

The toll roads were not economically feasible in all 500 simulations

*Includes the interest accrued during construction Source: <u>Florida Statues</u> **Environmental Impact**

M-CORES Pollution Promotion

Highway development leads to high pollutant levels especially during the sprawl phase

Health Risks

Potential health risks to those that use unsophisticated water treatment plants and domestic wells

, (5)Ф ФФ

ÌА

90% of Floridians get their drinking water from aquifers

ŤŤŤŤŤŤŤŤŤŤŤ ŤŤŤŤŤŤŤŤŤŤŤ

900,000 people potentially lose access to domestic wells

1/20 Floridians affected by aquifer contamination

Nitrates & Phosphates

- Excess nitrates in drinking water depletes blood oxygen levels, enlarges the thyroid gland, and increases risk of 15 cancers
- Excess phosphates can cause kidney damage and osteoporosis

- Higher levels of heavy metals are associated with toxicity, liver, kidney, and intestinal damage, anemia, and cancer
- Alkali metals increase risk of chronic congestive heart failure in adults and kidney immaturity in children

Groundwater Decline

- Groundwater drawdown not only decreases the quantity of potable water available but increases pollutant concentration
- Pumping at a lower water table increases risk of saltwater intrusion

Without water supply, Floridians won't have access to safe water

Current Economic Issues

Problems associated with Florida's water under current circumstances

Issue

Takeaways

Florida needs to invest between **\$18.4 - \$29.4 billion** in water treatment projects over the next 20 years **7.5 million** Floridians received water from utilities that violated standards

High pollutant concentration requires **more advanced** water treatment plants

Water Treatment

Florida needs to invest a total of **\$21.9 billion** into potable water over the next 20 years Florida's daily water demand is expected to increase by **20%** over the next 10 years

Population growth

exacerbates existing water issues

Numerous counties face **scarce water availability** due to dry seasons Florida has reached the **aquifer extraction limit** in the south An already **over-tapped water infrastructure** should not be stressed more due to M-CORES

Carbon Emissions from Development

New Toll roads will increase carbon emissions through construction, increase in traffic, and industrial GDP growth

Correlation between GDP Growth and Carbon Emissions

As industrial GDP grows, industries which utilize fossil fuels increase production, leading to a rise in carbon emissions

——— M-(Numerical Relationship	
1 Manufacturing Growth	M-CORES may encourage manufacturing growth due to transportation cost decline leading to increased carbon	With all the factors that cause GDP growth to effect carbon emissions, a 1% increase in GDP
2 Increase in Traffic	Construction and new traffic will add ~1 and ~20 million tons of CO₂ emissions respectively by 2070	leads to a .93% increase in CO_2 emissions in industrial GDP, a nearly direct correlation
3 Less Service Industry	Introduction of new industries with M-CORES may change current economic service-oriented landscape	1: .93 ratio

Economic Impact

Research on highway development impact on the economy have shown both positive and negative economic consequences

Developing highways today is too costly for the societal return to make sense

Comparable Case Study

North Carolina reveals meaningful takeaways regarding the effectiveness of infrastructure projects

Alternative Investment

Investing into highway infrastructure will be an inefficient use of taxpayer dollars

M-CORES Claims	Proposed Benefits	Drawbacks		
Support industrial/manufacturing	 Highways reduces industrial transportation costs 	 Industrial sector only accounts for 15% of the region's GDP 		
economies	 \$1b in infrastructure reduces business costs by \$180,000 	 The tertiary sector accounts for 70% of the region's GDP 		
Provide construction	 Highway construction will provide temporary employment 	 These temporary jobs will have minimal impact on GDP 		
employment	• \$1.7 billion directly produces 13,400 jobs	 Most job growth will come from indirect/ induced employment such as suppliers 		

M-CORES Economic Takeaways Development

/<u>//</u> 7:17

Existing mature highways mean new infrastructure will have **low impact**

Rural geographies with industrial type industries produce **minimal economic value**

Investing in M-CORES will yield low benefits

Telecommunications investment has a higher cost benefit ratio than M-CORES

Broadband Investment

Broadband Deployment Overview

The government can impact the economics of the area by deploying broadband in underserved areas without jointly doing a highway construction project.

Situation

M-CORES proposes that a highway development project will benefit underserved rural areas by providing access to broadband

Objective

Determine if there is a more efficient way to connect underserved M-CORES areas to broadband independently of road development

1 Determine best method to deploy broadband: aerial versus underground installation

2 Identify the economic costs and benefits of deploying broadband without road development

Our framework

Identify M-CORES counties <70% with access to broadband

Assume government only bears construction cost and estimate total fiber optic cable installation cost for each county

Estimate proposed increase in GDP growth rate after broadband deployment using data from comparable Florida counties

We found total costs to be ~\$160 million and benefits to be \$1.6B in GDP growth across three years

Primary Target Counties

We focused on M-CORES counties of <70% population with broadband access.

Rural populations have far less broadband access

Aerial vs. Underground Fiber Optic Cable Installation

Aerial fiber optic cable installation is approximately cheaper by \$3,350 *per mile and less environmentally detrimental than underground installation.*

Aerial fiber optic cable installation is the best method to deploy broadband to underserved M-CORES counties

Sources: CTC Technology and Energy Consulting, Renewable Grids Initiative

*Based on cost and population density data from Alabama, Florida, and North Carolina, relationship between population density and installation cost

Average Cost of Broadband Implementation

We created a heatmap displaying a mid estimate of ~160 million to install broadband in identified underserved broadband M-CORES counties.

Benefit/Cost of Broadband Implementation

4

31

Aerial fiber optic installation is highly beneficial in all target counties in which it is deployed

19:1 benefit/cost ratio total for identified counties

- Measured economic benefit as difference in GDP before and after broadband implementation
- Assumed 1% additive increase in GDP growth rate (Lake County, FL as a case study had $3\%)^1$
- Calculated change in GDP before and after broadband, compounded over 3 years
- Found overall equation of Benefit Across 3 Years/Avg Cost = 1942.1*(% increase in GDP) 0.3125

The total benefit would \$+1.6B across all identified counties over three years

Questions

Overview A walkthrough of M-CORES and our key areas of study

Triple-Bottom Line Impact Assessment of M-CORES's fiscal, environmental, and socioeconomic impact

Hurricane Evacuation and Traffic Congestion

In-depth analysis of effect on evacuation and traffic measures and best practices

Conclusion A recap of the key findings of the study

Issues with M-CORES

M-CORES's current proposal will exacerbate the problem it seeks to resolve due to latent demand

Latent demand is a universal occurrence, indicating how increased capacity cannot reduce congestion.

Traffic Congestion Alleviation

The government should place more emphasis on developing sustainable methods of transportation

The Problem ·

Residents experience **daily traffic congestion** and will continue to do so unless there is a meaningful push to change traffic patterns and habits.

Our Solutions

Virtuous Methods

Manage traffic lights to prioritize bus lanes by synchronizing light phases to bus schedules

Provide benefits to employers to **organize carpools**

Specify travel time for large delivery trucks to reduce congestion

Place emphasis on cycling, bus services, and public infrastructure

Improve Public Infrastructure

Promote public and non-motorized transport through increased amount of buses and bus stops

Augment cycling infrastructure by adding bike lanes to public and highly frequented areas

Invest in contactless ticket purchase and multi-door boarding

Daily Traffic Congestion Solutions (continued)

A final strategy to alleviate traffic congestion utilizes tolls on existing roads to limit use of certain roads

Adding tolls to existing roads imposes monetary cost on commuter that wants to save time and avoiding congestion. <u>~</u>

This would reduce demand as **not everyone is willing to pay**. Once demand is reduced, usage will decrease, as will congestion.

Hurricane Evacuation Strategy

Effective Fuel Distribution

Optimal fuel distribution techniques, such as one with a vaccine analogue, will reduce the amount of fuel-shortage related congestion issues

Our Recommendations

Revising fuel distribution strategy with a vaccineanalogue driven technique.

Cost effective

Easy to implement

Reduces fuel shortages

Vaccine Analogue to Fuel Distribution

	_	
Sick Individuals	Gas stations with fuel shortages	
Disease Spread	Gas stations near stations with fuel shortages are more likely to run out of gas	
Modeling	Models that predict optimal refueling strategies	

Impact of Analogue (Naples-Fort Myers)

During Hurricane Irma, refueling rate of 0.1 per capita using vaccine analogue would reduce peak fuel shortage from 55% to 48%. Additional refueling rate of 0.75 for half day would further reduce shortage to 37%.

Efficient Usage of Roads

Investing in road manipulations such as contraflows will result in faster evacuation times and less congestion

Case Studies					
	New Orleans	Baton Rouge			
Initial Problem	Configuration of contraflow initiation	Bottleneck from freeway merge points			
Proposed Solution	Moved contraflow initiation point upstream and add 2 loading points	Contraflow of ~100 miles from Louisiana into Mississippi			
Impact	Increased outbound volume by 30,000 over 12-hour period	Evacuation lasted 1/2 of assumed 72-hour timeline			

Key Insights						
Optimal placement	Contraflows should only be implemented in historically high- volume areas during evacuation. It is important to consider the emergency vehicles that still need to travel in opposite direction.		Initiation points		Efficiency of contraflow is highly dependent on where and how many initiation and loading points exist. It is important to continuously reevaluate where these points are located.	

Our Recommendations

Adding a contraflow operation on **Florida Turnpike** from SR70 to north of Osceola Parkway, **I-75** from I-275 to Wildwood, **I-4** from the I-275 interchange to I-75 east of Tampa

- Location of contraflows drawn from analysis conducted by Atkins North America on identifying which routes might warrant contraflow operations during evacuation
- Projected to increase capacity by 14,000-17,000 vehicles per hour on these roads

1

1

Public Awareness Campaign for Emergency Preparedness

It is important to invest in a public education campaign to inform the general population about optimal evacuation strategies

Impact

- Disseminating information 2-3 days prior to an expected emergency, as well as continuously throughout year
- Encouraging shorter distance evacuation by issuing evacuation orders with specific times and resources
- **Promoting nighttime evacuation** when possible
- Projected cost of \$5.3 million dollars is far cheaper than M-CORES

Proposed Alternatives to M-CORES

There are cheaper, more effective ways to mitigate congestion and streamline hurricane evacuation than M-CORES proposes

Daily Traffic Congestion

Utilizing **virtuous methods** such as traffic light management and truck travel times will encourage more people to use public transportation

Hurricane Evacuation

Using a vaccination analogue strategy to **reduce fuel shortages** will lower the amount of congestion during an evacuation

Improving **public transportation infrastructure** and adding more bike lanes will also motivate people to drive less **Contraflows** have been effectively utilized on high density roads to create evacuation procedures that are as efficient as possible

While unpopular, **tolls** are highly effective at reducing traffic congestion and should be used strategically

Educating the public and having clear communication channels allows for better planned evacuations 2-3 days before the anticipated event

Due to latent demand, constructing a large highway as proposed by M-CORES will not resolve these two issues

Overview A walkthrough of M-CORES and our key areas of study

Triple-Bottom Line Impact Assessment of M-CORES's fiscal, environmental, and socioeconomic impact

Hurricane Evacuation and Traffic Congestion In-depth analysis of effect on evacuation and traffic measures and best practices

Conclusion A recap of the key findings of the study

Cost-Benefit Analysis

The cost of M-CORES exceeds it potential benefits while alternatives independent of road construction are a superior option

While M-CORES is infeasible and creates negative returns—failing to meet its goals—alternative strategies could achieve success

Questions

Appendix

Highway Comparison Methodology

Through an analysis of several key factors, we can properly compare past highway projects with proposed ones

Highway Scores are out of 5 possible points	Suncoast Score	Northern Turnpike Score	Southwest-Central Score
Suncoast Parkway 2 P1			
Wekiva Parkway			
Southeast Extension (NC)			
Florida Turnpike			
Florida I-4			
Richmond Connector (VA)			
Florida SR 417			
Florida I-275			
Florida I-595	\bigcirc		\bigcirc

Based on comparisons, several past projects can be used as examples against future construction

Toll Comparison Methodology

Through an analysis of several key factors, we can properly compare past tollway projects with proposed ones

Scores are out of 5 possible points	Suncoast Score	Northern Turnpike Score	Southwest-Central Score
I-75 (Everglades Pkwy)			
Florida's Turnpike			
SR 408			\bigcirc
SR 417			
SR 429			\bigcirc
SR 528			
SR 570 (Polk Pkwy)			
SR 589 (Suncoast Pkwy)			

Based on comparisons, several past projects can be used as examples against future construction

					Suncoast Connector	Northern Turnpike Connector	Southwest-Central Florida Connector
Project	Build Year	Cost in MM (2020 \$\$)	Miles	Cost/Mile	Similarity Score 0-5 (Low-High)	Similarity Score 0-5 (Low-High)	Similarity Score 0-5 (Low-High)
Suncoast Parkway 2 Phase 1 – Cost Example	Expected completion 2022	134	13	10.3	3	2	3
Wekiva Parkway – Cost Example	Expected completion 2022	1740	25	69.6	2	3	1
Southeast Extension in NC	Expected completion 2023	2200	29	75.9	1	2	1
Florida Turnpike	1957	3900	265	14.7	а	2	3
Florida I-4	1959	4,125	264.666	15.6	2	2	3
Richmond & Petersberg Connector VA	1988	762.826	35	21.8	2	1	2
SR 417	1988	1,243	54	23.0	1	3	2
I-275	1973	774	61	12.7	2	3	2
I-595	1989	2564	13	197.2	C	2	0

Trial 1	SunCoast								15 Year PayBack \$ (5,963,589,478)							
		Year 1 12/31/2020		Year 5 6/30/2025		Year 10 6/30/2030		Year 15 6/30/2035	Year 20 6/30/2040		Year 25 6/30/2045		Year 30 6/30/2050		Year 35 6/30/2055	Year 40 6/30/2060
		Total														
Construction Costs	\$	6,961,730,701	\$	2,852,783,407	\$	3,521,954,824	\$	586,992,471	\$ -	\$	-	\$	-	\$	-	\$ -
Net Revenue			\$	-	\$	-	\$	349,240,955	\$ 506,884,334	\$	602,759,812	\$	688,621,208	\$	785,308,101	\$ 894,632,844
Operating Expenses			\$	-	\$	-	\$	68,478,754	\$ 99,389,281	\$	118,188,432	\$	135,024,033	\$	153,982,285	\$ 175,418,551
EBITDA			\$	-	\$	-	\$	280,762,201	\$ 407,495,052	\$	484,571,380	\$	553,597,174	\$	631,325,816	\$ 719,214,292
Cashflows	\$	(6,961,730,701)	\$	(2,852,783,407)	\$	(3,521,954,824)	\$	(306,230,270)	\$ 407,495,052	\$	484,571,380	\$	553,597,174	\$	631,325,816	\$ 719,214,292
Carbon Tonnes	\$	581,492	\$	177,920	\$	305,006	\$	56,896	\$ 6,992	\$	6,655	\$	6,199	\$	5,844	\$ 5,556
Carbon Expense	\$	29,074,613	\$	8,896,003	\$	15,250,290	\$	2,844,813	\$ 349,603	\$	332,747	\$	309,932	\$	292,222	\$ 277,801
Environmental Cashflows			\$	(2,861,679,410)	\$	(3,537,205,114)	\$	(309,075,083)	\$ 407,145,450	\$	484,238,633	\$	553,287,243	\$	631,033,594	\$ 718,936,492

Trial 1	NorthernTurnpike									15 Year PayBack \$ (1,845,470,201)								
	Year 1 12/31/2020			Year 5 6/30/2025		Year 10 6/30/2030		Year 15 6/30/2035		Year 20 6/30/2040		Year 25 6/30/2045		Year 30 6/30/2050		Year 35 6/30/2055		Year 40 6/30/2060
		Total																
Construction Costs	\$	2,585,089,211	\$	1,534,239,938	\$	1,050,849,273	\$	-	\$	-	\$	-	\$	-	\$	-	\$	-
Net Revenue			\$	-	\$	139,634,384	\$	323,253,798	\$	394,408,786	\$	454,248,515	\$	518,711,767	\$	591,542,271	\$	673,892,378
Operating Expenses			\$	-	\$	27,379,345	\$	63,383,223	\$	77,335,209	\$	89,068,512	\$	101,708,391	\$	115,988,910	\$	132,136,022
EBITDA			\$	-	\$	112,255,039	\$	259,870,575	\$	317,073,577	\$	365,180,002	\$	417,003,376	\$	475,553,361	\$	541,756,357
Cashflows	\$	(2,585,089,211)	\$	(1,534,239,938)	\$	(938,594,234)	\$	259,870,575	\$	317,073,577	\$	365,180,002	\$	417,003,376	\$	475,553,361	\$	541,756,357
Carbon Tonnes	\$	542,618	\$	274,967	\$	238,123	\$	4,562	\$	4,309	\$	3,966	\$	3,692	\$	3,481	\$	3,309
Carbon Expense	\$	27,130,907	\$	13,748,368	\$	11,906,156	\$	228,100	\$	215,437	\$	198,293	\$	184,601	\$	174,052	\$	165,463
Environmental Cashflows			\$	(1,547,988,306)	\$	(950,500,390)	\$	259,642,475	\$	316,858,140	\$	364,981,709	\$	416,818,776	\$	475,379,309	\$	541,590,894

Trial 1	SouthwestCentral									ear PayBack				
		Year 1 12/31/2020		Year 5 6/30/2025		Year 10 6/30/2030		Year 15 6/30/2035	Year 20 6/30/2040		Year 25 6/30/2045	Year 30 6/30/2050	Year 35 6/30/2055	Year 40 6/30/2060
		Total												
Construction Costs	\$	5,276,964,680	\$	2,162,398,680	\$	2,669,628,000	\$	444,938,000 \$	-	\$	-	\$ -	\$ -	\$ -
Net Revenue			\$	-	\$	-	\$	527,318,469 \$	764,102,810	\$	902,780,784	\$ 1,031,259,033	\$ 1,176,054,504	\$ 1,339,776,050
Operating Expenses			\$	-	\$	-	\$	103,395,983 \$	149,824,377	\$	177,016,190	\$ 202,208,053	\$ 230,599,378	\$ 262,701,705
EBITDA			\$	-	\$	-	\$	423,922,486 \$	614,278,434	\$	725,764,594	\$ 829,050,980	\$ 945,455,126	\$ 1,077,074,344
Cashflows	\$	(5,276,964,680)	\$	(2,162,398,680)	\$	(2,669,628,000)	\$	(21,015,514) \$	614,278,434	\$	725,764,594	\$ 829,050,980	\$ 945,455,126	\$ 1,077,074,344
Carbon Tonnes	\$	596,901	\$	177,920	\$	305,006	\$	58,902 \$	9,293	\$	8,786	\$ 8,183	\$ 7,715	\$ 7,334
Carbon Expense	\$	29,845,029	\$	8,896,003	\$	15,250,290	\$	2,945,101 \$	464,670	\$	439,313	\$ 409,138	\$ 385,759	\$ 366,721
Environmental Cashflows			\$	(2,171,294,683)	\$	(2,684,878,290)	\$	(23,960,615) \$	613,813,764	\$	725,325,281	\$ 828,641,842	\$ 945,069,366	\$ 1,076,707,623

https://www.flsenate.gov/Committees/billsummaries/2019/html/2065

					All in Millions	
Year	STTF	GR	Small Roads	Total Exc. Workforce	Total Before/After Fiscal 2022-2023	Construction Workforce Development
2019	45	83.9	30	158.9		2.5
2020	90	40.12	30	160.12		2.5
2021	132.5		30	162.5	481.52	2.5
2022	135		30	165		Excluded due to not in construction costs
2023	135		30	165		
2024	135		30	165		
2025	135		30	165		
2026	135		30	165		
2027	135		30	165		
2028	135		30	165		
2029	135		30	165		
2030	135		30	165	1215	
Total:					1696.52	

We will assume this funding will be split proportionally to the cost of the projects.

Befo	re 2022 M	After 2022 M	Total Cost B	Total Funding
Suncoast Connector	232.2	586.0	4995.0	818.2
Northern Turnpike Connector	93.7	236.5	2016.0	330.2
Southwest-Central Florida Connector	155.6	392.5	3346.0	548.1

Total

10357

NOTES TO THE FINANCIAL STATEMENTS (\$ amounts presented in thousands (000) unless otherwise noted) FISCAL YEARS ENDING JUNE 30, 2018 and 2017

Maturing	Principal	Interest		Total
2019	\$ 141,130	\$ 113,690	\$	254,820
2020	130,480	106,633		237,113
2021	137,070	100,028		237,098
2022	125,405	93,075		218,480
2023	123,195	86,747		209,942
2024 - 2028	614,805	344,088		958,893
2029 - 2033	522,270	222,244		744,514
2034 - 2038	428,425	108,201		536,626
2039 - 2043	206,380	27,562		233,942
2044 - 2045	25,455	 1,404		26,859
Total	\$ 2,454,615	\$ 1,203,672	\$	3,658,287
	 the second se	the second se	_	the second se

As of June 30, 2018, debt service requirements to maturity, including interest at fixed rates, were as follows:

Note: The amount of NOI required is 1.2. Fdot should keep this at 1.5 at the least to remain secure

Public Awareness Campaign for Emergency Preparedness Cost Estimate

Expenses

Personnel

Public Information Officer	\$70,221			
Hotline Assistant	\$31,200	Telephone Hotline	\$1,700 per month	
Total Personnel Costs	\$101,421	Total Telephone Hotline Cost Printing	\$20,400 per year	
—		Newsletter	4,517 public schools	
Markating			28 community colleges	
Marketing			282 city halls	
Printing			6,337,929 households	
- Newsletter	\$3 805 654	Total Distribution	6,342,756 per month	
- INEW SIELLEI	\$5,005,05 4	Total Distribution	76,113,072 per year	
- Fact Sheet	\$648,246	Newsletter Cost	\$0.05 per newsletter	
- Pamphlets	\$388,948	Total Newsletter Cost	\$3,805,654	
TV Ads	\$102,240	Fact Sheet	6,337,929 households	
Social Media			4,517,000 public schools	1000 copies per school;
Facebook Ada	¢27.009		700,000 community colleges	25000 per community college
- Facebook Aus	\$37,900		1,410,000 city halls	5000 per city hall
- Google Ads	\$103,140	Fact Sheet Distribution	12,964,929	
 Total Marketing	\$5,086,136	Fact Sheet Cost	\$0.05 per fact sheet	
Tolonhono Hotlino Comrico	¢20,400	Total Fact Sheet Cost	\$648,246	
Telephone Houline Service	\$20,400			
Office Supplies	\$104,159	Pamphlet Distribution	12,964,929	
Total Expenses	\$5.312.116	Pamphlet Cost	\$0.03 per pamphlet	
	+++++++++++++++++++++++++++++++++++++++	Total Pamphlet Cost	388.948	

A public awareness campaign running for 1 year is likely to cost the state of Florida approximately \$5.3 million.

