**Table C-16. Tar Buildup Control Operating Parameters** 

| Parameter <sup>1</sup> | Value    | Units    |
|------------------------|----------|----------|
| Heat Input Capacity    | 5        | MMBtu/hr |
| Natural Gas Usage      | 4.90E-03 | MMscf/hr |
| Potential Operation    | 8,760    | hr/yr    |

<sup>1.</sup> Operating parameters provided by Nexus PMG.

Table C-17. Tar Buildup Control Potential Criteria Pollutant and GHG Emissions

| Pollutant                            | Natural Gas<br>Combustion<br>Emission Factor <sup>1</sup><br>(lb/MMscf) | Control Efficiency <sup>2</sup> (%) | Potential E<br>(lb/hr) | missions³<br>(tpy) |
|--------------------------------------|-------------------------------------------------------------------------|-------------------------------------|------------------------|--------------------|
| СО                                   | 84                                                                      | 50%                                 | 0.21                   | 0.90               |
| $NO_X$                               | 100                                                                     | -                                   | 0.49                   | 2.15               |
| Filterable PM                        | 1.9                                                                     | -                                   | 0.01                   | 0.04               |
| Condensable PM                       | 5.7                                                                     | -                                   | 0.03                   | 0.12               |
| Total PM                             | 7.6                                                                     | -                                   | 0.04                   | 0.16               |
| Total PM <sub>10</sub> <sup>4</sup>  | 7.6                                                                     | -                                   | 0.04                   | 0.16               |
| Total PM <sub>2.5</sub> <sup>4</sup> | 7.6                                                                     | -                                   | 0.04                   | 0.16               |
| SO <sub>2</sub>                      | 0.6                                                                     | -                                   | 2.94E-03               | 0.01               |
| VOC                                  | 5.5                                                                     | 95%                                 | 1.35E-03               | 5.90E-03           |
| CH <sub>4</sub>                      | 2.30                                                                    | -                                   | 0.01                   | 0.05               |
| N <sub>2</sub> O                     | 2.20                                                                    | -                                   | 0.01                   | 0.05               |
| CO <sub>2</sub>                      | 120,000                                                                 | -                                   | 588                    | 2,576              |
| CO <sub>2</sub> e <sup>5</sup>       | 120,713                                                                 | -                                   | 592                    | 2,592              |

<sup>1.</sup> Uncontrolled emission factors for natural gas combustion from AP-42, Section 1.4 - Natural Gas Combustion, Table 1.4-1,3 (9/03).

Potential Emissions (lb/hr) = { [Natural Gas Combustion EF (lb/MMscf) \* Heat Input Capacity (MMscf/hr)] + [Wood Drying EF (lb/ODT) \* Dryer Capacity (ODT/hr)] } \* [100% - Control efficiency (%)]

Potential Emissions (tpy) = Potential Emissions (lb/hr) \* Annual Operation (hr/yr) / 2,000 (lb/ton)

<sup>5.</sup>  $CO_2e$  is calculated using Global Warming Potentials (GWPs) from 40 CFR Part 98, Subpart A, Table A-1 effective January 1, 2014. GWPs used for  $CO_2$ ,  $CH_4$ , and  $N_2O$  are listed below.

| CO <sub>2</sub>  | 1   |
|------------------|-----|
| CH₄              | 25  |
| N <sub>2</sub> O | 298 |

<sup>2.</sup> The RTO is assumed to control VOC with 95% efficiency and CO with 50% efficiency.

<sup>3.</sup> Potential emissions are calculated as follows:

<sup>4.</sup> Emission factors for Total  $PM_{10}$  and Total  $PM_{2.5}$  are the sum of the filterable and condensable components. It is conservatively assumed that filterable  $PM = filterable PM_{10} = filterable PM_{2.5}$ .