Renewable Biomass Group Potential Emission Calculations **Table C-8. Green Hammermills Operating Parameters** | Emission Source | Annual
Throughput
(tons/year) ¹ | |-------------------|--| | Green Hammermills | 337,968 | ^{1.} Annual throughput of green residuals that require processing through the green hammermill, based on capacity of green hammermill. Table C-9. Green Hammermills Dust Collector Control Device Operating Parameters and Potential PM Emissions | Control Device | Flow Rate
(dscfm) ¹ | Loading Rate
(gr/dscf) ¹ | Potential E
Filterable PM
(lb/hr) | | |--------------------------|-----------------------------------|--|---|------| | Green Hammermill Filters | 3,000 | 0.010 | 0.26 | 1.13 | ^{1.} Flowrate provided by Nexus PMG. Loading rate assumed. Potential Emissions (lb/hour) = Flowrate (dscfm) * 60 (mins/hr) * Pollutant Loading (grs/dscf) / 7,000 (gr/lb) Potential Emissions (tons/year) = Potential Emissions (lb/hour) * Annual Operation (hours/year) / 2,000 (lbs/ton) Where annual emissions assume 8,760 hours of operation per year for conservatism. Table C-10. Green Hammermills Potential VOC and HAP Emissions | Pollutant | Emission
Factor
(lb/ton) | Control
Efficiency ⁶
(%) | Potential Emissions ⁷
(lb/hr) (tpy) | | |------------------------------|--------------------------------|---|---|------| | VOC ¹ | 1.08 | 95% | 2.08 | 9.11 | | Acetaldehyde ² | 4.00E-03 | 95% | 0.01 | 0.03 | | Formaldehyde ² | 8.00E-03 | 95% | 0.02 | 0.07 | | Methanol ² | 4.00E-03 | 95% | 0.01 | 0.03 | | Acrolein ³ | 1.08E-02 | 95% | 0.02 | 0.09 | | Phenol ⁴ | 4.50E-03 | 95% | 0.01 | 0.04 | | Propionaldehyde ³ | 1.88E-02 | 95% | 0.04 | 0.16 | | Total HAP ⁵ | - | | 0.10 | 0.42 | ^{1.} Emission factor from Westervelt wet classisizers testing. Emissions from the Westervelt wet classisizers were controlled with an RTO; therefore, the uncontrolled emission factor was taken by back-calculating the controlled emission factor assuming a 95% control efficiency and a 10% safety factor applied. Potential Emissions (lb/hour) = Potential Emissions (tpy) * 2,000 (lb/ton) / Annual Operation (hr/yr) Potential Emissions (tons/year) = Emission Factor (lb/ton) * (1 - Control Efficiency (%)) * Annual Throughput (tons/year) / 2,000 (lbs/ton) ^{2.} Potential emissions are calculated as follows: ^{2.} Emission factors from GA EPD guidance for Hammermills at Wood Pellets Facilities. ^{3.} Emission factors for a dry hammermill from Enviva Sampson (NC) permit application. ^{4.} Emission factor from AP-42 Section 10.6.2, Table 10.6.2-7 for a hammermill. Emission factors for other pollutants are non-detect. ^{5.} Total HAP is the sum of all individual HAP emissions. ^{6.} Per GA EPD guidance for storage/handling at Wood Pellets Facilities, a 95% DRE is applied for VOC and HAP emissions routed to an oxidizer. The green hammermill will be routed to the RCO. ^{7.} Potential emissions are calculated as follows: