Renewable Biomass Group Potential Emission Calculations

Table C-8. Green Hammermills Operating Parameters

Emission Source	Annual Throughput (tons/year) ¹
Green Hammermills	337,968

^{1.} Annual throughput of green residuals that require processing through the green hammermill, based on capacity of green hammermill.

Table C-9. Green Hammermills Dust Collector Control Device Operating Parameters and Potential PM Emissions

Control Device	Flow Rate (dscfm) ¹	Loading Rate (gr/dscf) ¹	Potential E Filterable PM (lb/hr)	
Green Hammermill Filters	3,000	0.010	0.26	1.13

^{1.} Flowrate provided by Nexus PMG. Loading rate assumed.

Potential Emissions (lb/hour) = Flowrate (dscfm) * 60 (mins/hr) * Pollutant Loading (grs/dscf) / 7,000 (gr/lb) Potential Emissions (tons/year) = Potential Emissions (lb/hour) * Annual Operation (hours/year) / 2,000 (lbs/ton) Where annual emissions assume 8,760 hours of operation per year for conservatism.

Table C-10. Green Hammermills Potential VOC and HAP Emissions

Pollutant	Emission Factor (lb/ton)	Control Efficiency ⁶ (%)	Potential Emissions ⁷ (lb/hr) (tpy)	
VOC ¹	1.08	95%	2.08	9.11
Acetaldehyde ²	4.00E-03	95%	0.01	0.03
Formaldehyde ²	8.00E-03	95%	0.02	0.07
Methanol ²	4.00E-03	95%	0.01	0.03
Acrolein ³	1.08E-02	95%	0.02	0.09
Phenol ⁴	4.50E-03	95%	0.01	0.04
Propionaldehyde ³	1.88E-02	95%	0.04	0.16
Total HAP ⁵	-		0.10	0.42

^{1.} Emission factor from Westervelt wet classisizers testing. Emissions from the Westervelt wet classisizers were controlled with an RTO; therefore, the uncontrolled emission factor was taken by back-calculating the controlled emission factor assuming a 95% control efficiency and a 10% safety factor applied.

Potential Emissions (lb/hour) = Potential Emissions (tpy) * 2,000 (lb/ton) / Annual Operation (hr/yr)
Potential Emissions (tons/year) = Emission Factor (lb/ton) * (1 - Control Efficiency (%)) * Annual Throughput (tons/year) / 2,000 (lbs/ton)

^{2.} Potential emissions are calculated as follows:

^{2.} Emission factors from GA EPD guidance for Hammermills at Wood Pellets Facilities.

^{3.} Emission factors for a dry hammermill from Enviva Sampson (NC) permit application.

^{4.} Emission factor from AP-42 Section 10.6.2, Table 10.6.2-7 for a hammermill. Emission factors for other pollutants are non-detect.

^{5.} Total HAP is the sum of all individual HAP emissions.

^{6.} Per GA EPD guidance for storage/handling at Wood Pellets Facilities, a 95% DRE is applied for VOC and HAP emissions routed to an oxidizer. The green hammermill will be routed to the RCO.

^{7.} Potential emissions are calculated as follows: